Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science


A high-quality science education provides the foundations for understanding the world through the specific disciplines of Biology, Chemistry and Physics. Science has changed our lives and it is vital to the world's future prosperity, and all pupils should be taught essential aspects of the knowledge, methods, processes and uses of science. Through building up a body of key foundational knowledge and concepts, pupils should be encouraged to recognise the power of rational explanation and develop a sense of excitement and curiosity about natural phenomena. They should be encouraged to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes.

The National Curriculum for Science aims to ensure that all pupils:

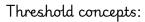
- Develop scientific knowledge and conceptual understanding through specific disciplines of biology, chemistry and physics.
- Develop understanding of **nature**, **processes and methods of science** through different types of scientific enquiries that help them to answer scientific questions about the world around them.
- Are equipped with the scientific knowledge required to understand the uses and implications of science, today and in the future.

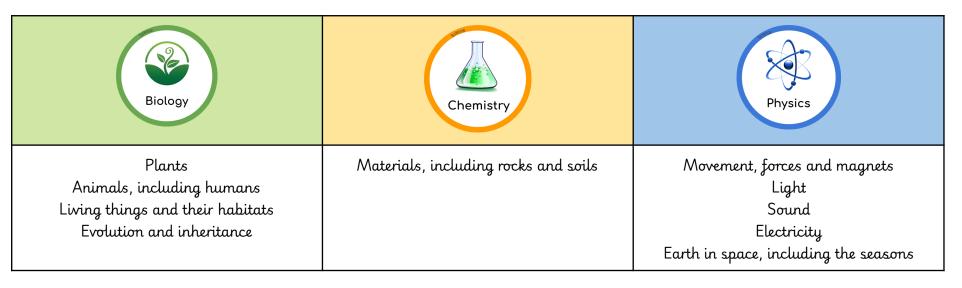
Working Scientifically

In addition to the substantive scientific knowledge, children will experience a curriculum rich in opportunities to hone their skills as a scientist. 'Working Scientifically' specifies the understanding of the nature, processes and methods of science for each year group. The disciplinary knowledge is taught within each strand of Biology, Chemistry and Physics, focusing on the key features of scientific enquiry so that pupils learn how to use a variety of approaches to answer relevant questions. The 'Working Scientifically' skills, laid out in the National Curriculum, reflect the cyclical nature of scientific research: asking questions, planning and investigation, making observations, recording results, drawing conclusions and evaluating the efficacy of the

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities
Subject: Science

investigation at advancing knowledge, including asking further questions and planning further relevant enquiries. Science lessons should be practical and interactive, teaching knowledge through using and applying the skills of scientific enquiry, enabling children to ask questions with confidence and accuracy. The National Curriculum states that types of enquiry that should be covered include:


Observing Over Time	Pattern Seeking	Identifying, Classifying and Grouping	Comparative and Fair Testing	Research Using Secondary Sources


It is expected that the skills in 'Working Scientifically' are woven through each unit of learning and that substantive knowledge is not gained solely through practical approaches to answering questions. Research using secondary sources, which include lessons, teacher models and diagrams, is therefore given weight as a type of enquiry due to being essential in gaining scientific knowledge required for every child to have a deep understanding of each of the 'big ideas' at the end of KS2. Along with ensuring that the majority of science lessons will enable children to undertake scientific enquiry in some form, children will be explicitly taught how to approach these in the cyclical nature of science. These Working Scientifically Skills are crucial for scientific understanding and thinking, with the expectation for children to be explicitly taught these and relate them to their experiences.

Contents Quick Links: 1. Threshold Concepts 2. How Learning in the Early Years Starts 3. Breadth of Study (NC Ref) 4. Knowledge and Understanding-Biology 5. Knowledge and Understanding-Chemistry 6. Knowledge and Understanding-Physics 7. Experimental and Investigation Skills 8. Analysis and Evaluation of Results 9. Scientific Oracy and Literacy 10. Key Vocabulary 11. Assessment/POP Task

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

Working Scientifically Skills Taught Explicitly

Asking Questions	Making Predictions	Setting Up Tests	Observing and Measuring	Recording Data	Interpreting and Communicating Results	Evaluating
ii			Q			
Asking questions that can be answered using a scientific enquiry.	Using prior knowledge to suggest what will happen in an enquiry.	Deciding on the method and equipment to use to carry out an enquiry.	Using senses and measuring equipment to make observations about the enquiry.	Using tables, drawings and other means to note observations and measurements.	Using information from the data to say what you found out.	Reflecting on the success of the enquiry approach and identifying further questions for enquiry.

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

How learning starts in the early years:

The first steps learning Science is built on developing an enquiring mind, promoting children's intellectual development, equipping children for the ever growing scientific and technological world. This includes the development of thinning logically, problem solving and learning that Science can be fun!

The Early Years Foundation Stage Curriculum's Characteristics of Effective Learning, provide the foundations for Working Scientifically:

- Asking Questions: Guide their own thinking and actions by referring to visual aids or by talking to themselves while playing. Use pretend play to think beyond the "here and now". Know more, so feel confident about coming up with their own ideas. Make more links between those ideas.
- Plan: plan and think ahead about how they will explore or play with objects. Show goal-directed behaviour. Concentrate on achieving something that's important to them.
- Make Observations: Realise that their actions have an effect on the world, so they want to keep repeating them. Respond to new experiences that you bring to their attention.
- Gather, Record and Classify Data: Sort Materials.
- Answer Questions and Make Conclusions/Predictions: Solve real problems.
- Evaluate: Begin to correct their mistakes themselves. Review their progress as they try to achieve a goal. Check how well they are doing.

In the Early Years, Science is very exploratory, immersive and language rich. Children are encouraged to observe change in the environment, seasons, materials and weather. Planned experiments are provided with a rich vocabulary in order to discuss scientific threshold concepts. Along with the learning environment being enhanced with scientific equipment, books and visual aids are provided to develop understanding of natural changes in the world. Within the provision, toys and resources linked to threshold concepts in science support the observation skills. e.g Light box, circuits, magnifying glasses, rocks, shells, fossils, magnets and loose parts. Pupils will have visited parks and looked at the natural world around the school. They will listen to a broad selection of stories which will have provided a foundation to their learning in this area.

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

Children will have some understanding of different seasons.

They will learn about the **life cycles** of chickens, frogs and butterflies with eggs, spawn and caterpillars being bought into school. They are encouraged to observe the daily changes, comment on what they see and develop their questioning skills to find out more.

Children will learn about **planting** and the conditions needed for plants to grow. They will have opportunities to grow vegetables in our raised bed, plant sunflowers and beans, watching and commenting on the progress and stages in growth.

Children will learn about **substances and properties** when cooking and within the malleable area. They will make dough and explore the properties of malleable materials such as corn flour, sand, clay. Children will have made observations and drawn pictures of plants.

Earth in space as a theme is explored through the use of books, stories, and media clips.

Forest School plans for exploration of the natural world, looking for similarities and differences, **habitats**, and spotting **changes** in the seasons. Children are asked to explain findings, and explain why things occur and how changes happen.

The Early Learning Goals directly link to Science along with this.

- People, Culture and Communities: Describe their immediate environment using knowledge from observation, discussion, stories and non-fiction texts and maps.
- The Natural World: Explore the natural world around them, making observations and drawing pictures of plants and animals. Understand some processes and changes in the natural world around them, including the seasons and changing states of matter. Pupils should understand that we use materials to make things in the context of familiar stories, for example 'The Three Little Pigs.' Know some similarities and differences between the natural world around them and contrasting environments, drawing on their experiences and what has been read in class.

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	Key Stage One		Key Stage Two				
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	
Breath Of Study (NC Ref):	Context: Animals, Including Humans - Biology Identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals. Identify and name a variety of common animals that are carnivores, herbivores and omnivores. Context: Plants - Biology Identify and name a variety of common wild and garden plants,	Context: Animals, Including Humans - Biology Notice that animals, including humans, have offspring which grow into adults. Find out about and describe the basic need of animals, including humans, for survival (water, food and air). Describe the importance for humans of exercise, eating the right amounts of different types of	Context: Animals, Including Humans - Biology Identify what animals, including humans, need the right types and amount of nutrition and that they cannot make their own food; they get nutrition from what they eat. Identify that humans and some other animals have skeletons and muscles for support, protection and movement.	Context: Animals, Including Humans - Biology Describe the simple functions of the basic parts of the digestive system in humans. Identify the different types of teeth in humans and their simple functions. Construct and interpret a variety of food chains, identifying producers, predators and prey.	Context: Animals, Including Humans - Biology Describe the changes as humans develop to old age. Context: Living Things and Their Habitats - Biology Describe the difference in the life cycles of a mammal, an amphibian, an insect and a bird. Describe the life process of reproduction in some plants and animals. Context: Properties and Changes of Materials - Chemistry	Context: Animals, Including Humans - Biology Identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood. Recognise the impact of diet, exercise drugs and lifestyle on the way their bodies function. Describe the ways in which nutrients and water are transported within animals, including humans.	

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

including
deciduous and
evergreen trees.
Identify and
describe the basic
structure of a
variety of common
flowering plants,
including trees.

Context: Seasonal Changes - Biology
Observe changes
across the four
seasons.
Observe and
describe weather
associated with the
seasons and how
day length varies.

Context: Everyday Materials -Chemistry Distinguish between an object and the material food, and hygiene.

Context: Plants - Biology
Observe and
describe how seeds
and bulbs grow
into mature plants.
Find out and
describe how
plants need water,
light and a suitable
temperature to
grow and stay
healthy.

Context: Living
Things and Their
Habitat - Biology
Explore and
compare the
differences between
things that are

Context: Plants -Biology Identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers. Explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant. Investigate the way in which water is transported within

plants.

Context: Living Things and Their Habitats - Biology Recognise that living things can be grouped in a variety of ways. Explore and use classification keys to help group, identify and name a variety of living things in their local and wider community. Recognise that environments can change and that this can sometimes pose dangers to living things.

Context: States of

Compare and group together everyday materials on the basis of their properties, including their hardness. solubility, transparency, conductivity (electrical and thermal), and response to magnets. Know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution. Use knowledge of solids, liquids and gases to decide how mixtures might be separated, including

Context: Living Things and Their Habitats - Biology Describe how living things are classified into broad groups, according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals. Give reasons for classifying plant and animals based on specific characteristics.

Context: Evolution and Inheritance -Biology

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

from which it is made. Identify and name a variety of everyday materials, including wood, plastic, grass, metal, water and rock. Describe the simple physical properties of a variety of everyday materials. Compare and group together a variety of everyday materials on the basis of their simple physical properties.

living, dead and things that have never been alive. Identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other. Identify and name a variety of plants and animals in their habitats. including micro habitats.

Explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal.

Context: Rocks - Chemistry
Compare and group together different kinds of rocks in the basis of their appearance ad simple physical properties,
Describe in simple terms how fossils are formed when things that have

Compare and group materials together, according to whether they are solids, liquids or gases. Observe that some materials change state when they are heated or cooled. and measure or research the temperature at which this happens in degrees Celsius (°C). Identify the part played by evaporation and

condensation in the

water cycle and

Matter - Chemistry

metals, wood and plastic. Demonstrate that dissolving, mixing and changes of state are reversible changes. Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda.

Context: Earth and Space - Physics Describe the movement of the Earth, and other planets, relative to

Recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago. Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents. Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

Describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food.

Context: Everyday Materials - Chemistry

Context: Everyday
Materials Chemistry
Identify and
compare the
suitability of a
variety of everyday
materials,
including wood,
metal, plastic,
glass, brick, rock,
paper and

lived are trapped within rock. Recognise that solids are made from rocks and organic matter.

Context: Light -Physics

Recognise that they need light in order to see things and that dark is the absence of light.

Notice that light is reflected from surfaces.

Recognise that light from the sun can be dangerous and that there are ways to protect their eyes.

associate the rate of evaporation with temperature.

Context: Sound -

Physics Identify how sounds are made. associating some of them with something vibrating. Recognise that vibrations from sounds travel through a medium to the ear. Find patterns between the pitch of a sound and features of the object that produced

it.

the Sun in the solar system. Describe the movement of the Moon relative to the Earth. Describe the Sun. Earth and Moon as approximately spherical bodies. Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky.

Context: Forces - Physics

Explain that
unsupported objects
fall towards the
Earth because of the
force of gravity
acting between the

Context: Light -Physics

Recognise that light appears to travel in straight lines.
Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye.
Explain that we see

things because light travels from light sources to our eyes from light sources to objects and then to our eyes.

Use the idea that ight travels in straight lines to explain why

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

act at a distance. not a lamp will light buzzers and the on/off Observe how in a simple series position of switches.			Subject: Science	2		ST JOHN'S SCH
		particular uses. Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting	shadows are formed when the light from a light source is blocked by an opaque object. Find patterns in the way that the size of shadows change. Context: Forces and Magnets - Physics Compare how things move on different surfaces. Notice that some forces need contact between two objects, but magnetic forces can act at a distance.	sounds get fainter as the distance from the sound source increases. Context: Electricity - Physics Identify common appliances that run on electricity. Construct a simple electrical circuit, identifying and naming basic parts, including cells, wires, bulbs, switches and buzzers. Identify whether or not a lamp will light	object. Identify the effects of air resistance and friction that act between moving surfaces. Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater	same shape as the objects that cast them. Context: Electricity - Physics Associate the brightness of a lamp or the volume of a buzzer with the number and voltage of cells used in the circuit. Compare and give reasons for variations in how components function, including the brightness and bulbs, the loudness of buzzers and the on/off

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	 		 JOHN'S SCIT
	repel each other	associate this with	symbols when
	and attract some	whether or not the	representing a simple
	materials and not	lamp is part of a	circuit in a diagram.
	others.	complete loop with	
	Compare and group	a battery.	
	together a variety of	Recognise that a	
	everyday materials	switch opens and	
	on the basis of	closes a circuit and	
	whether they are	associate this with	
	attracted to a	whether or not a	
	magnet, and	lamp lights in a	
	identify some	simple series circuit.	
	magnetic materials.	Recognise some	
	Describe magnets	common conductors	
	as having two	and insulators, and	
	polars.	associate metals	
	Predict whether two	with being good	
	magnets will attract	conductors.	
	or repel each other,		
	depending on which		
	poles are facing.		
	pous are juining.		

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

Knowledge and Understanding

Context: Animals, Including Humans.

Context: Animals.

Different parts of

the human body.

Each job each part

of the body has a

function. Humans

have five senses,

associated body

part - touch (skin),

sight (eyes), smell

(nose), hearing

(ears) and taste

Birds - all lay eggs;

feathers, two legs

and two wings.

Most can fly but

not all. They have

lungs, breathe air,

blooded. Fish - all

and are warm

(tongue).

have beaks.

each with an

including Humans.

All animals. including humans, have offspring, they get older and bigger, and most will go on to have offspring of their own. All animals are at a stage in their lifecycle. Animals, including humans, change a lot as they move through the cycle. Humans begin as babies and grow into adults; we go through different stages of growth.

Context: Animals, Including Humans Animals, including

humans, cannot produce their own food. Animals get the energy they need to survive from a balanced and varied diet with specific types and amounts of nutrients. Humans need a balanced diet of fruit and vegetables, carbohydrates, protein, dairy and fat to stay healthy. To keep pets healthy, provide

Context: Animals, Including Humans

Threshold Concept: Biology

Humans have three types of teeth. Molars: the teeth at the back of the mouth, used for cutting food. Incisors: the teeth at the very front of the mouth, used for cutting food. Canines: the teeth at the sides of the mouth between the incisors and molars. used for tearing up food. Different animals have different teeth based on their diet.

Context: Living Things and Their Habitats

A lifecycle is the different stages of life for all living things. There are normally four major events in the lifecycle of animals: birch, growth, reproduction, death. There are some significant differences in the specific development processes for the lifecycle of mammals. amphibians, insects and birds.

Context: Living Things and Their Habitats

The classification of animals involves organising them into groups based on shared characteristics - taxonomy. This helps scientists study and understand the enormous variety of living organisms. Animals can be sorted in a variety of ways e.g. vertebrates, invertebrates. warm-blooded. cold-blooded or into groups such as annelids, molluscs,

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

live in water and have scales: have gills that allow them to breathe underwater and are cold blooded. Do not have legs. Most lay eggs. Mammals - have fur; lungs to breathe air: are warm blooded; give birth to their young. Not all live on land. Amphibians - can live on land and water: most have slimy skin; lay eggs; are cold blooded. Reptiles have dry, scaly skin; breathe air; are cold blooded:

Human body parts change with age. As people grow older, their body goes through various changes. Animals, including humans, all need water, air, shelter and food to survive. Humans should exercise to keep us fit and healthy and help our body to function. Exercise is a way of moving our bodies to eat a balanced diet to stay healthy, and helps us feel good. Animals, including

balanced nutrition. regular exercise, routine veterinary care, proper hygiene, and a loving environment. Animals, including humans need a skeleton for support, protection of organs, and to enable movement. It is important to eat a healthy diet with enough calcium to help your bones grow. We find calcium in dairy products like milk and cheese. Muscles often work in pairs, pulling

Herbivores: need flat molars and flat incisors. Carnivores: need canines and incisors. Humans and Omnivores: need all three types of teeth. Digestion happens in the digestive system. Made up of different organs that break down the food so it can be absorbed into our blood to give our body the nutrients and energy it needs to function. All living things need energy from

A naturalist is an individual who has a keen interest and expertise in the study of the natural world. They observe, document and study plants, animals, fungi, rocks, and other elements of the environment. Asexual reproduction allows for plants to reproduce without seeds and produce offspring that are genetically identical to the parent plant. Sexual reproduction in plants is where pollen (from the male part) and ovule (from

arachnids. Classification enables scientists to identify relationships among species, predict traits, and communicate biological information effectively. It is a crucial tool in simplifying the study of animals and contributing to our overall understanding of the natural world. Plants can be classified based on shared characteristics: plant taxonomy. This process helps scientists organise plants into systematic

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

lay eggs; can live on land and water. Carnivores eat other animals. Herbivores eat plants. Omnivores eat both plants and animals.

Context: Plants Know and name a variety of common wild and garden plants, including evergreen and deciduous trees. Roots are the part of the plant which is usually under the ground. Roots hold the plant up and take in water from the soil. Flowers, petals, roots, stem and leaves are all parts humans, need to
eat a balanced diet
to stay healthy.
This includes
eating the right
amount of fruit,
vegetables, cereal,
meat, dairy, fat
and sugar.

Context: Living

Things and Their Habitats
Living things can move, feed, grow, reproduce and use their senses. Dead things were once alive (were once part of a living things or a living thing that has died) but no longer

on your bones so that you can move. Your skeleton has joints which allow movement. When a muscle contracts it gets shorter and then relaxes to return to its normal length. It is important to eat a healthy diet with enough protein to help your muscles grow properly. We find protein in meat, fish, eggs and beans. People who engage in more physical activity often develop stronger muscles

food to grow, repair and reproduce.
Animals need to eat plants/other animals to get their energy. The flow of energy from one living thing to another is shown in the arrows in a food chain.

Things and Their Habitats
Classification is putting things into groups. Living things can be divided into these groups of 'classified' by looking at

Context: Living

the female part) come together to make seeds, and these seeds grow into new plants. Reproduction means to have babies and offspring. Animals need both male and female to reproduce to mate. This is sexual reproduction. Internal reproduction involves the fertilisation of eggs inside the body of the female. External reproduction involves the release of eggs and sperm into the external

and meaningful groups. Plants can be classified in a range of ways: seeds, no seeds, flowers, no flowers, leaf size, shape. Different plant groups have specific adaptations that suit particular environmental conditions. Microorganisms, including bacterial, viruses, fungi, and protists, play a crucial role in various aspects of life on Earth.

Context: Evolution and Inheritance

Evolution explains

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

of flowering plants. Trunks, branches. bark, blossom and fruit are parts of a tree. Trees are plants. Deciduous trees change and drop their leaves with the seasons. Evergreen trees stay green and keep their leaves all year round.

Context: Seasonal Changes

In the UK, there are four seasons: spring, summer, autumn and winter. The weather is often different in each season. In summer the day is longer than the night. In Winter

shows signs of life. Things that have never been alive are objects or materials that were never part of a living thing. A habitat is a place where an animal or plant lives. It is an environment that has everything the animals and plants in it need to live. A microhabitat is a very small habitat that also has everything animals and plants in it, need to live. There are a range of different habitats

because exercise promotes muscle growth and strength.

Context: Plants

Plants spread their seeds in lots of different ways. This is called seed dispersal. Some seeds are transported by the wind and are shaped to float, glide or spin through the air. This is important to prevent seeds from needing to compete for space, light, water and nutrients. Roots:

differences between the way they look and behave. Animals are divided into two main groups. Animals that have a backbone(spine) are called vertebrates. Animals that do not have a backbone are called invertebrates. A classification key is a tool used by scientists and naturalists to help identify and categorise living things. An environment

similarities and

environment, where fertilisation takes place.

Context: Animals.

Including Humans. Know that the human lifecycle has many stages: embryo, foetus, baby, toddler, child, adolescent, adult, older adult. Puberty is a natural process during which an individual undergoes physical and hormonal changes, marking the transition from childhood and adulthood. Changes including the

how the living things on our planet today have slowly developed from simpler life forms that lived millions of years ago. By comparing fossils from older and newer layers of rock, scientists can see how things have changed over time. When living things reproduce, they pass on characteristics to their offspring inheritance. Variation explains the different features and characteristics of living things. Variation is a key

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

the day is shorter than the night. Different seasons lead to changes in plant and animal

behaviour.

around the world. Each habitat has specific features like temperature, water availability, and types of food that meet the needs of the different animals and plants living there. Living things depend on each other. A simple food chain shows the flow of food (energy) from one living thing to another. For example, grass (producer) is eaten by a rabbit (prey), which is then eaten by a fox (predator).

keep the plant steady and upright in the soil. Root hairs absorb water and nutrients (food) from the soil. Stem: carries water and nutrients to different parts of the plant. The stem of a tree is called its trunk. This often divides into smaller branches. Leaves: Use light from the Sun, along with carbon dioxide from the air and water to make food for the plant. Flowers: are involved in plant reproduction and

refers to the surroundings or conditions in which living things exist and interact. This can be made up of natural and human-made features. Humans affect the environment in many ways for different reasons. Changes to environments can damage habitats and cause danger to animals and plants that live in them, including us. Conservation is the careful protection

development of characteristics, such as growth of body hair, changes in voice pitch and the onset of reproductive capabilities.
Generally, the larger the animals, the longer the gestation period. The human gestation period is nine months.

factor in the evolution and adaptation of living things to their environments. Natural selection is the process by which living things with traits better suited to their environment are more likely to survive and reproduce, passing those beneficial traits on to their offspring. Adaptation is the process by which living things develop traits or characteristics that enhance their ability to survive and reproduce their

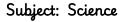
Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

Context: Plants Plants can grow from seeds and bulbs. Germination is the process where seeds grow into plants. Most seeds and bulbs need water to grow. Seeds and bulbs have a store of food inside them. Plants need these things to grow and keep them healthy: water, light, suitable temperature, air. The cycle from seed to plant to flower to seed is called a

produce seeds from which new plants grow. Plants need water to make their own food. Water is absorbed and transported through the stem, leaves and roots. All plants are alive. They need air (carbon dioxide). light, water, nutrients, and the right temperature to grow and stay healthy. Many plants rely on animals and insects (like bees) to reproduce. To make a seed, a flower

and management of our natural environment to keep it healthy and balanced for the benefit of all living things, now and in the future. specific environment.


Context: Animals, Including Humans

The circulatory system has three main parts: the heart (a muscular organ that pumps blood), blood vessels (arteries. veins and capillaries), and blood (which carries oxygen, nutrients, hormones, and waste products). The circulatory system transports nutrients, water and oxygen to the entire body. Blood is made from four parts: red blood cells - transport oxygen, while blood

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

lifecycle.	needs to be	cells – protect against
	pollinated. This	disease, blood
	means that pollen	platelets - help blood
	from one flower	to clot and form scabs
	needs to travel to	to repair a cut,
	another. Bees and	plasma – a yellowy
	other animals move	liquid that carries
	pollen from plant to	these cells and
	plant. This is called	important nutrients
	pollination.	around your body.
		When you engage in
		physical activity,
		especially aerobic
		exercise like running
		or cycling, your heart
		rate typically
		increases. This is
		because your muscles
		require more oxygen
		and nutrients to meet
		increased demand for
		energy during

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	 1		
			exercise. The heart
			responds by pumping
			more blood, leading to
			a higher heart rate.
			The circulatory
			system transports
			water and nutrients
			around the body. Not
			all animals have the
			same system – some
			have double
			circulatory systems
			and some have single,
			some have closed
			circulatory systems
			and some have open.
			It is important to eat a
			healthy diet for our
			brains to
			concerntrate, bodies
			can fight off
			infections and that we
	1		

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	 	 	OT JOHN'S SCH
			do not become
			overweight which cna
			cause long-term poor
			health. We need sleep
			to help us recover and
			recharge. This is good
			for our mental health
			and physical health.
			Some drugs are
			helpful, like
			medicines, that
			should be taken
			according to
			instructions. Taking
			drugs, drinking
			alcohol and smoking
			can have very
			harmful effects on our
			bodies. They are
			highly addictive
			which means it can be
 	 		difficult to stop and

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Context: Materia An object is something that y can touch. A material is what the object is mad from. Properties word that helps y to describe the characteristics (look or feel) of different materia We can group different materia together based of their properties.	Materials Everyday objects are made from materials that have different properties. Different materials have properties that make them suitable for specific purposes and uses. The shapes of solid objects made from some materials can	Context: Rocks Rock, or stone, is a hard material. Different groups of rock have their own unique appearance and set of physical properties. Sedimentary rocks are laid down in layers which are made from broken up bits of other rocks and remains of animals and	concept: Chemistry Context: States of Matter Solids, liquids and gases are called the three states of matter. Each one has its own unique set of properties. Solids: stay in one place, can be held, keep their shape, always take up the same amount of space and can be cut or shaped. Liquids: flow or can	Context: Properties and Changes of Materials A thermal conductor is a material that lets heat pass through it easily. Thermal: anything related to heat. Conductor: something that allows the flow of a particle thing. A thermal insulator is a material that reduces or prevents the transfer of heat.	this has damaging, long-term effects on our bodies.
	be changed by squashing, bending, twisting and stretching.		cut or shaped.	'	

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

example, water.	Igneous rocks are	container they are	transfer of
Waterproof means	made when molten	in; they always take	electricity, heat or
that water cannot	rock (lava or	up the same	sound properties,
pass through an	magma from a	amount of space	including thermal
object or material.	volcano) cools	(volumes stays the	conductivity,
It is a material that	down. They are very	same).	Materials that make
keeps water out.	hard and do not	Gases: are often	the best thermal
	wear away easily.	invisible, do not	insulators are
	Metamorphic rocks	have a fixed shape	typically those that
	are rocks that have	(they spread out	trap air well. These
	been changed over	and change their	materials trap small
	time by intense	shape and volume	pockets of air that
	heat and pressure	to fill whatever	act as barriers to
	deep underground.	container they are	slow down the
	They are hard and	in); they can be	transference of heat,
	can be polished.	squashed.	helping to keep
	Some rocks are	When some solids	things warm or cool.
	more durable than	are heated, they	Air is a good
	others. These rocks	melt and turn into a	insulator because it
	are good for	liquid. The	is a poor conductor
	building as they	temperature this	of heat. A reversible
	last a long time	happens at is called	change in science is
	without breaking or	the melting point,	a change that can be
	getting weaker.	and is measured in	undone or reversed,
	Some rocks, such	degrees Celsius (°C).	and the original

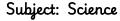
Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

 			
	as sandstone or	When a liquid is	substance or
	chalk, let water	cooled, it freezes	materials can be
	soak through them.	and turns into a	recovered. Filtering is
	They are called	solid. Freezing	a method to separate
	permeable rocks.	happens at the	a solid from a liquid
	Other rocks, such	same temperature	in a mixture. It
	as slate, do not let	as the melting	involves passing the
	water soak through	point. When water	mixture through a
	them. They are	(a liquid) is heated,	filter, often made of
	called impermeable	it turns into water	paper or another
	rocks. Fossils are	vapour (a gas) and	porous material. The
	the preserved	evaporates. When	liquid passes
	remains of a dead	water vapour (a gas)	through, leaving the
	plant or animal.	is cooled, it	solid behind. Seiving
	Fossils come in all	condenses and	is a method to
	shapes and sizes.	changes back into	separate different
	Fossils are formed	water (a liquid).	sized particles in a
	through a process	Higher	mixture. A sieve,
	of multiple stages	temperatures speed	which is a tool with
	called fossilisation,	up evaporation and	holes of a specific
	and this takes place	lower humidity (dry	size, is used. Smaller
	over many, many	air) helps things dry	particles pass
	years. Soil is made	faster.	through the holes,
	from organic		while larger ones are
	matter – dead		retained. Evaporation
			·

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	rotting plants, rock, air and water. Soil also contains lots of animals, for example, earth worms and microorganisms too tiny to see with the naked eye.		is a method to separate a solute from a solvent to a mixture. It involves heating the mixture to allow the solvent to turn into vapor and leave the solute behind. The vapor can be condensed back into a liquid. An irreversible change is a permanent change that creates something new or different. It cannot	
			be undone.	
	Threshold (Concept: Physics		
	Context: Forces and Magnets We need forces to make things move. A contact force can be a push or pull. We can make	Context: Sound Sounds are made when objects vibrate. This makes the air around the object vibrate and	Context: Earth and Space Life can survive on Earth because the Earth's position in the solar system means we have	Context: Electricity A circuit will always have a battery as well as other components (bulbs, buzzers, switches, motors

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities


Subject: Science

		things move faster,	their air vibrations	energy,
		slower or even stop	then travel to and	tempera
		if the size of the	enter your ear.	stable c
		force changes.	Sound waves can	Earth ro
		A contact force can	travel through	the Sun
		work against the	solids, liquids and	spinning
		movement of an	gases.	At the so
		object and act in	Strong vibrations	Moon is
		the opposite	(more energetic	Earth. T
		direction. Some	sound waves) make	constan
		surfaces affect the	sound appear	pattern.
		movement of an	louder. Weak	orbits th
		object more than	vibrations (less	spins or
		others. Not all	energetic sound	once ead
		forces need contact:	waves) make sound	orbits th
		a magnetic force	appear quieter.	Sun, Ea
		can act at a	Sound decreases in	Moon a
		distance. Magnets	volume as they get	approxi
		have two ends.	further from the	spherico
		These are called the	sound source. This	The Ear
		north pole and	is because the	the eigh
		south pole. When	sound vibrations	orbit are
		two of the same	decrease as they	The plai
		poles are placed	travel through the	called N
		closed together,	medium. Soft and	Venus, E
I .	1	1	1	1

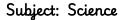
the right ature and a climate. The otates around n whilst also rg on its axis. same time, the is orbiting the This is a nt repeating ı. The Moon the Earth and on its axis ach time it the planet. The arth and are imately al bodies. rth is one of ht planets that round the Sun. inets are Mercury, Earth, Mars,

which need the battery to work). When drawing circuit diagrams we use simple symbols to represent different components. Increasing the number of batteries/cells in a circuit can increase the voltage travelling to the bulb or buzzer, usually making it brighter or louder. Adding more bulbs in a circuits, means more energy (voltage) is required to keep the brightness the same. If the voltage is not increased, this will affect the brightness of the bulbs. The more

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

they repel (push apart) each other. When close they attract (pull together) each other. Magnets are metals that attract other metals. Every magnet is a metal, but not all metals are magnets. Magnets can vary in strength based on their size, shape and the type of material from which they are made. Some magnets are stronger than others.

Context: Light
We need light to
see. Light can come
from many


dense materials are generally good at providing insulation against sound. This is because they absorb or prevent sound waves from travelling through. The pitch of a sound is how high or low the sound is. A high sound has quick vibrations and produces a low pitch.

Context: Electricity
Electricity can be
dangerous, and we
need to know how to
work safely with it.
Some appliances
require mains
electricity, and
some require
batteries to operate.

Jupiter, Saturn, Uranus and Neptune. The Earth rotates constantly on an axis. It takes 24 hours for a full rotation. When parts of the Earth face the Sun, it is daytime. When Earth is facing away from the Sun, it is night-time. Shadows change throughout the day as the Earth rotates on its axis. Shadows are longer when we are further away from the Sun and shooter when we are closer to the Sun. Shadows change direction during the day as the Earth

components, the more energy they use and so the bulb is not as bright and the buzzer not as loud. A switch opens and closes the circuit. When the switch is open the electricity cannot flow and therefore the component will not light/sound or the motor will not work. The battery provides the power source. Electricity will only travel around a circuit that is complete. When the circuit is complete, the electricity flows around the circuit. The electrical energy is converted to light energy in the bulb.

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

different sources, such as the Sun. starts, torches, lamps and candles. Reflection involves a source of light and a surface. The light travels towards the surface and bounces off. When light from an object is reflected by a surface, it changes direction. Smooth, shiny surfaces such as mirrors and polished metals reflect light well. Dill and dark surfaces, such as dark fabrics, absorb light. A shadow is a dark shape formed when

Appliances convert electrical energy into other types of energy. A circuit always needs a power source, such as a battery, with wires connected to both the positive (+) and negative (-) ends. A circuit can also contain other electrical components, such as wires, bulbs, buzzers or motors. which allow electricity to pass through. Electricity will only travel around a circuit that is complete. When a switch is open (off), there is a rotates from west to east.

Context: Forces Friction is a force between two surfaces that are in contact and sliding, or trying to slide, across each other. Friction always slows a moving object down. Gravity is a force that acts at a distance. Gravity attracts all objects towards each other. Larger objects have a stronger gravitational pull so heavy and light objects fall at the same speed. Everything is pulled to the Earth by gravity. This causes

The switch opens and closes the circuit. If the circuit is broken, the electricity cannot flow so the bulb won't light and/or the buzzer wont sound.

Context: Light Light travels in straight lines. When a beam of light from the light source hits an object, it is reflected by the object and travels in straight lines to our eyes. Our eyes take in some of this light and information is sent to the brain - how we see the object. When a beam of light hits a smooth and shiny surface, that ray is called the

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

light is stopped or blocked by an object or person. Shadows show the shape and size of the object that's blocking the light. They change in size and shape depending on the angle and position of the light source and the object. In the morning shadows are longer when the Sun is lower. As the day goes on, shadows get shorter when the Sun goes higher. In the evening, shadows get longer again as the Sun starts to go down.

gap in the circuit. When a switch is closed (on), it makes the circuit complete. Electricity can travel around the circuit. Some materials let electricity pass through them easily. These materials are known as electrical conductors. Many metals like copper, iron, and steel are excellent conductors. This is why parts of electrical divides that require electricity to pass through them are often made of metal. Some

unsupported objects to fall. Air resistance is a type of friction between air and another material. It is a force that opposes the movement of an object as it moves through the air. Objects with a large surface area create more air resistance so they move more slowly through air. Water resistance is fraction between water and an object that is moving through water. This force acts upwards against gravity when an object is falling through water. If the upthrust is less than

incident ray. This hits the mirror at an angle. The ray of light then bounces off the mirror (is reflected) and this is called the reflected ray. Refraction happens when light changes direction, or bends when it moves from one transparent material to another. Refraction happens when light changes direction, or bends, when it moves from one transparent material to another. This can also cause light to separate into its different colours. This band of colours is called the spectrum.

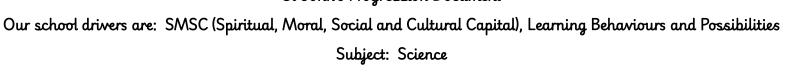
Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

		materials do not	the weight of the	
		allow electricity to	object, the object will	
		pass through them.	sink. If the upthrust	
		These materials are	is equal to the weight	
		known as electrical	of the object, the	
		insulators. They are	object will float.	
		applied as	Some mechanisms,	
		protective coatings	including levers,	
		for conducting	pulleys and gears,	
		materials. The	allow a smaller force	
		plastic insulation	to have a greater	
		around wires serves	effect.	
		as an insulator,		
		safeguarding		
		against electrical		
		shocks.		
		A circuit always		
		needs a power		
		source, such as a		
		battery, with wires		
		connected to both		
		the positive and		
		negative ends. A		
		circuit can also		
		contain other		

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

				electrical components, such as wires, bulbs, buzzers or motors, which allow electricity to pass through. Electricity will only travel around a circuit that is complete.		
Experimental and Investigation Skills	Ask simple questions. Verbally state what they are going to investigate. Observe closely. Carry out simple tests using non-standard units of measurement where appropriate. Gather and record simple data. Classify and group objects and living	Ask simple questions and recognise that they can be answered in different ways. Make simple predictions based on a question. Identify what they will change and keep the same. Observe closely using simple	Ask questions and understand there are different enquiry types they could use to answer them. Make relevant predictions. Identify what they will change, observe and keep the same. With support, set up simple practical	Ask relevant questions and use different types of scientific enquiry to answer them. Make predictions based on simple scientific knowledge. Identify what they will change, observe or measure and keep the same	Ask scientific questions and begin to understand which questions would be best suited to each enquiry type. Make predictions based on scientific knowledge. With support plan different types of scientific enquiry. Where appropriate,	Ask relevant scientific questions and choose which enquiry type would be best suited to answer them. Make predictions based on scientific knowledge. Plan different types of scientific enquiries to answer questions, including recognising and controlling

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities


i	i	i	i	i	
things into groups	equipment.	enquiries.	Set up simple	identify the	variables where
based on simple	Perform simple	Begin to use	practical enquiries,	dependent and	necessary.
properties.	tests using	scientific	comparative and	independent and	Use a range of
	standard units of	equipment to make	fair tests.	controlled variables.	scientific equipment
	measurement	observations.	Make systematic	Use a range of	to make systematic
	where appropriate.	Carry out tests and	and careful	scientific equipment	and careful
	Gather and record	simple experiments	observations.	to make systematic	observations with
	data to help in	and take	Take accurate	and careful	increased complexity.
	answering	measurements	measurements	observations.	Take measurements,
	questions.	using standard	using standing	Take accurate	using a range of
	Identify and	units.	units of	measurements using	scientific equipment,
	classify data	Gather and record	measurement,	a range of scientific	with increasing
	gathered, along	data in different	using a range of	equipment. Start to	accuracy and
	with objects and	ways to help	equipment,	take repeat readings	precision, taking
	living things.	answer questions.	including	when appropriate.	repeat readings when
		Record findings	thermometers and	Gather, record and	appropriate.
		using simple	data loggers.	classify data with	Record data and
		scientific language,	Gather, record and	increased complexity	results of increasing
		drawings, labelled	classify data in a	to help answering	complexity using
		diagrams, bar	variety of ways to	questions.	scientific diagrams
		charts and tables.	help answering	Record data using	and labels,
			questions.	scientific diagrams	classification keys,
<u>!</u>	ļ.	ļ	ļ.		l

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

						SOMY'S SOM
				Record findings using simple scientific language, drawings, labelled diagrams, keys, bar charts and tables.	and labels, classification keys, tables, bar and line graphs.	tables, scatter graphs, bar and line graphs.
Analysis and Evaluation of Results	With support and scaffolding, make verbal predictions. Explain what they found out to an adult or partner. Answer simple questions.	Make simple verbal predictions. Talk about what they have found out and how they have found it out. Use their observations and ideas to suggest answers to questions.	Make verbal predictions. Report findings from enquiries, including oral and written explanations. Make simple conclusions. Use results, findings or observations to answer questions. Suggest questions for further investigation.	Report findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions. Use straight-forward scientific evidence to answer questions or to support their	Report and present findings from enquiries, including conclusions. Begin to identify casual relationships in oral and written forms such as displays and other presentations. Use scientific evidence to answer questions. Make conclusions based on scientific	Report and present findings from enquiries, including conclusions, casual relationships and explanations of and a degree of trust in results, in oral and written forms such as displays and other presentations. Use scientific evidence to answer questions. Make conclusions

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

•	<u> </u>	, 			
			findings.	evidence and from	based on scientific
			Use results to draw	their own testing and	evidence and from
			simple conclusions.	findings.	their own testing and
			Begin to identify	Identify differences,	findings.
			differences,	similarities of	Identify scientific
			similarities or	changes related to	evidence that has
			changes related to	simple ideas or	been used to support
			simple ideas or	processes.	or refute ideas of
			processes	Make predictions,	arguments.
			Begin to make	for new values,	Use test results to
			predictions for new	suggest	make predictions to
			values, suggest	improvements and	set up further
			improvements and	raise further	comparative and fair
			raise further	questions.	tests.
			questions.		Suggest investigation
			•		improvements
					including accuracy of
					results.
					Provide some simple
					examples of how to
					extend the
					investigation.

Scientific Oracy and Literacy

Use verbal communication or simple sentences to present findings. Make observational statements. Pronounce specific vocabulary accurately during discussions most of the time. Begin to read and spell scientific vocabulary correctly either phonetically plausibly or correctly most of the time. Record data using: venn diagrams, drawings.

With support, record their findings in explanatory sentences. Begin to decide how to present evidence. Use and pronounce scientific vocabulary accurately. Read and spell scientific vocabulary correctly. Record data using: venn diagrams, drawings/ diagrams, a table, a bar chart.

With support, record their findings in explanatory sentences. Use and pronounce scientific vocabulary accurately most of the time. Read and spell scientific vocabulary correctly. Record data using: venn diagrams, drawings/labelled diagrams, a table, a bar chart, physical models. storyboards, yes/no classification keys, graphs, simple

Gather, classify and present their evidence in a variety of ways. Including using explanatory paragraphs, drawing, diagrams, charts and tables. Begin to decide for themselves how to present evidence. Read and spell scientific vocabulary correctly. Record data using: venn diagrams, drawings/labelled diagrams, a table, a bar chart, physical models. storyboards,

Present their evidence, findings and conclusions in a variety of ways. Including writing explanatory paragraphs, oral forms, drawings, diagrams, charts and tables. With support, decide for themselves how to present evidence. Use and pronounce scientific vocabulary accurately during discussions. Read and spell scientific vocabulary correctly most of the time. Record data using: venn diagrams,

Report and present their findings from enquiries, including conclusions, casual relationships, explanations of and degree of trust in results, in oral and written forms. Choose appropriate means of presenting findings. Use and pronounce scientific vocabulary consistently accurately during discussions. Read and consistently correctly spell scientific vocabulary. Record data using: venn diagrams, drawings/labelled

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

						JOHN'S SCITE
			research reports.	classification keys, graphs, food chains, simple research reports.	drawings/labelled diagrams, a table, a bar chart, physical models, storyboards, classification keys, graphs, food chains, simple research reports.	diagrams, a table, a bar chart, physical models, storyboards, classification keys, graphs, food chains, simple research reports.
Key Vocabulary			Threshold (Concept: Biology		
	Head, neck, arms, elbows, legs, knees, face, ears, eyes, hair, mouth, teeth, tongue, feet, hands, skin, senses, ears/hearing, hands/touch, nose/smell, eyes/sight, tongue/taste, birds, fish, feathers, scales, breathe, lay, young, diet. Characteristic, cold-/	Growth, human, child, toddler, teenager, adult, survive, shelter, exercise, muscles, heart, lungs, brain, meat, fruit, vegetables, dairy, fat, sugar, healthy portion. Offspring, lifecycle, limbs, reproduce, energy, air (oxygen), temperature,	Growth, carbohydrate, fat, protein, dairy, domestic, pet, environment, diet, behaviour, company, health and welfare, skeleton, skull, ribcage, spine, muscle, relax, contract, physical activity, exercise, muscle growth, strength. Nutrition, energy, calcium, joints, organs, triceps, biceps.	Teeth, digestive system, mouth, tongue, stomach, adaptation, energy, prey, predator. Incisor, canine, molar, premolar, carnivore, omnivore, herbivore, oesophagus, small and large intestine, food chain, producer, primary/	Lifecycle, natural world, expertise, observe, document, study. Stages of development, sexual, asexual, reproduction, larvae, embryo, metamorphosis, naturalist, sexual/asexual reproduction, pistal/carpel, stigma, style, ovary, stamen,	Insects, algae, moss, fern, conifer, bacteria. Vertebrate/ non-vertebrate, taxonomy, arachnids, crustaceans, millipedes, annelids, echinoderms, molluscs, coelenterates, dichotomous key, ginkgoes, angiosperms, microorganisms,

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

Subject: Science

warm-blooded, mammal, reptile, amphibian, carnivore, omnivore, herbivore.

Plants, wild plants, garden plants, weeds, trees, seeds, root, shoot, soil, magnifying glass, flower, petal, stem, leaf/leaves, tree, trunk, bark, branch, blossom, acorn. Local plant names, hand lens, common tree names, deciduous, evergreen. Season, changes, autumn, winter, spring, summer, weather, sunrise, sunset. Temperature.

hygiene, mental health.

Living, features, move, feed, grow, senses, shelter, depend/survive, suitability, transfer, environment.
Reproduce, habitat, microhabitat, energy, food chain, producer, prey, predator.

Seed, bulb, plant, protect, mature, roots, shoot, food supply, temperature.
Seed coat, food store, seed leaves, germination, nutrients, absorb, energy, lifecycle, reproduce.

Seed, parent plant, roots, stem, leaves, trunk/branches, flowers, transport, absorb, tubes, air, light, temperature, flower, pollen, nectar, attract.

Dispersal, germination, root hair, function, nutrients, carbon dioxide, nutrient, drought,

climate, pollination,

reproduce.

secondary/tertiary consumer.

Group, category,

key, flowering,

non-flowering,

environment. surroundings, conditions, natural, human-made, endangered, extinct, positive, negative, indifferent, protect, manage, impact. Classification, vertebrate. invertebrate, spores, dichotomous key, urbanisation. deforestation, pollution, fossil fuels, natural disaster, human impact, Venn diagram, conversation.

anther, nectar,
pollen, pollination,
fertilisation,
dispersal, tuber,
bulb, runner, clone,
vegetative,
propagation, sperm,
egg,
external./internal
fertilisation.

Toddler, stages, lifecycle, puherty, puhic hair, breasts, periods, womb, chemical, mass.
Embryo, foetus, adolescent, hormones, genes, DNA, oestrogen, testosterone, pituitary gland, reproduction, menstruation, gestation period, viviparous, zygote.

microbes, fungi, protists.

Diversity, siblings, characteristics, traits, habitats, climate extinction, crossbreed. Evolution. mould/body/trace/ cast fossil, fossil record, species, variation, inheritance, inherited/ environmental variation. selective-breading natural selection. adaptation, organism, pollinators.

Pump, heart, lifestyle, drugs, medicine, illegal, vitamins.
Circulatory system, organ, blood vessels, arteries, veins, capillaries, living

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

					cells, oxygen, carbon dioxide, deoxygenated, platelets, plasma, red/white blood cells, antibodies, single/double circulatory system, nicotine, caffeine, proteins, stimulant, hallucinogen, depressant, ethanol.
Object, wood, plastic, metal, rock, water; hard/soft; stretchy/stiff; shiny/dull; rough/smooth; bendy/not bendy; waterproof/ not waterproof. Properties, material, opaque/transparen	Wood, metal, plastic, glass, arick, rock, paper, cardboard, strong, waterproof, bounce, grip (sole), squash, bend, twist, stretch, stretchy/ not stretchy, fabric. Property, material, object, suitability,	Rock, material, Earth, remains, heat, pressure, durable, absorb, preserve, decay, earthworm, leaves, soil. Mineral, formation, physical properties, metamorphic, sedimentary,	Melt, temperature, freeze. States of matter, solid, liquid, gas, matter, mass, volume, particles, properties, water vapour, melting point, freezing point, condensation,	Material, mixture, burning, rust. Thermal, conductor, insulator, transference, independent/ dependent/ controlled variable, dissolve, solid, liquid, gas, states of matter, solution, filtration,	

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	t, absorbent/not absorbent.	purpose, solid, fair test.	igneous, grains, molten, magma, lava, crystals, permeable, impermeable, sediment, fossil, palaeontologist, fossilisation, organic matter, erode.	evaporation, water cycle, precipitation.	sieving, evaporation, permeable, vapour, particles, irreversible, chemical changes, acid.	
			Threshold (Concept: Physics		
			Push, pull, surface, movement, direction, magnet, attract, repel, north pole, south pole, metal, iron, steel, nickel. Contact/ non-contact force, magnetism, horseshoe/bar/ring magnet. Light, reflect, visibility,	Sound, vibrate/vibrations, medium, volume, distance, decrease, insulation. Energy, sound wave, sound source, insulator, pitch. Appliance, mains electricity, battery, generated, power station, electrical energy, pylon, plug socket.	Earth, Sun, Moon, planet, star, solar system, rotate, seasons, shadows, position, 24 hours, daytime, night-time. Orbit, atmosphere, scale, heliocentric, geocentric, planetary movement, axis. Simple machine, effort, load, float, sink, streamlined. Friction, resistance,	Symbol, device. Series circuit, cell, battery, component, voltage. Beam, ray, shadow, cast, object, reflect, light source. Energy, distortion, factor, incident ray, reflected ray, angle of incidence, angle of reflection, normal line, phenomenon,

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

		dark, shiny, bright, dull, matt, mirror, angle, absorb, shadows, position, direction, damage, protection, sunrise, sunset, rotation, compass direction. Light source, opaque, translucent, transparent, filters, UV rays, retina, pupil.	Convert, series circuit, component, bulb (lamp), lamp holder, buzzer, cell, battery, wire, crocodile clip, electrical conductor, electrical insulator.	force-meter, contact force, gravity, gravitational pull, mass, matter, air resistance, water resistance, drag, upthrust, displace, lever, pulley, gear, transmission, mesh, axle, fulcrum, pivot, mechanism, redirecting force.	refraction, spectrum, prism.
		Dis	ciplinary		
Question, answer, observe, identify, classify, test. Communicate, compare, data, enquiry, equipment, gather, group, measure, pattern, practical activity, record, relationship,	Answer, classify, communicate, compare, data, enquiry, equipment, gather, group, identify, measure, observe, pattern, practical activity, question, record, relationship,	Analyse, bar change, chart, classify, comparative test, conclusion, data, data logger, diagram, display, enquiry, equipment, evidence, explain, fair test, findings, gather, group,	Analyse, bar chart, classify, comparative test, conclusion, data, data logger, diagram, enquiry, equipment, evidence, explain, fair test, findings, gather, group, identify, key,	Casual relationship, classification key, comparative test, conclusion, control diagram, enquiry, evidence to support/refute, fair test, graph(scatter/bar/line), information-record, measurement,	Casual relationship, classification key, comparative test, conclusion, control, diagram, enquiry, equipment, evidence to support/ refute, fair test, graph (scatter/ bar/ line), information-record, measurement,

Our school drivers are: SMSC (Spiritual, Moral, Social and Cultural Capital), Learning Behaviours and Possibilities

	secondary source, sort.	secondary source, sort, test.	identify, key, measurement, note, observe, pattern, predict, present, process, question, record, relationship, results, secondary source, similarity, sort, standard unit, systematic, table, thermometer, value.	measurement, note, observe, pattern, predict, present, process, question, record, relationship, results, secondary source, similarity, sort, standard unit, systematic, table, thermometer, value.	observation, pattern, prediction, repeat reading, research, results, secondary source, table, variable.	observation, pattern, prediction, repeat reading, research, results, secondary source, table, variable.
Assessment/POP Task	Supported verbal/ short written responses (conclusions) to each enquiry question studied each lesson.	Supported written responses (conclusions) to each enquiry question studied each lesson.	Write responses (conclusions and reports) to enquiry questions studied each lesson. Supported in the short paragraphs structure.	Supported written predictions. Write responses (conclusions and reports) to enquiry questions studied each lesson including reference to evidence.	Write predictions. Write responses (conclusions and reports) to enquiry questions studied each lesson including reference to evidence.	Write scientific hypotheses. Write responses (conclusions and reports) to enquiry questions studied each lesson including reference to evidence.